
Jeremy Appleyard, NVIDIA

Hardware and Software for NLP

2

Performance

Decreasing time to solution is very useful:

• For training it allows you to experiment with more model architectures

• In production environments providing a quick result to the end-user is crucial

Not everything can be done automatically: some things are up to the user

Motivation

3

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing

4

Low Latency or High Throughput?

CPU

 Optimized for low-latency access

to cached data sets

 Control logic for out-of-order

and speculative execution

GPU

 Optimized for data-parallel,

throughput computation

 Architecture tolerant of memory

latency

 More transistors dedicated to

computation

5

Low Latency or High Throughput

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation (10+k threads)

Design leads to performance

GPU – High Throughput Processor

CPU core – Low Latency Processor

Computation Thread

Tn Processing

Waiting for data

Ready to be processed

T1

T2

T3

T4

T1 T2 T3 T4

6

1

10

100

1000

10000

100000

2003 2005 2007 2009 2011 2013 2015

Theoretical single precision GFLOP/s at base clock

NVIDIA GPU Intel CPU

7

1

10

100

1000

2003 2005 2007 2009 2011 2013 2015

Theoretical Peak GB/s

NVIDIA GPU

Intel CPU

8

Roofline Model

Floating point throughput is often the quantity we want to maximize. If we double
achieved floating point throughput we double the amount of useful work we do in a
given time.

A roofline model is a plot of the computational intensity of an algorithm against it’s
expected floating point throughput for a given piece of hardware

Computational intensity is defined as the number of floating point operations per
byte: Flops/Byte

Useful analysis tool

9

Roofline Model
Current hardware

10

100

1000

10000

100000

0.25 1 4 16 64 256 1024

G
FL

O
P/

s

Arithmetic Intensity (AI)

Roofline Model for GPU and CPU

GPU CPU

OPERATION BYTES FLOPS AI

c=a+b 12 1 0.083

Mat-Vec O(N2) O(N2) O(1)

1D FFT O(N) O(NlogN) O(logN)

Mat-Mat O(N2) O(N3) O(N)

RNN ? ? ?

10

Performance Analysis of LSTM

11

LSTM

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑊ℎ𝑐𝑡 + 𝑏ℎ)

For a batch of 1, wt, ht are vectors of size H

Operations:

4x Matrix-vector multiplications (input 2H,
output H)

1x Matrix-vector multiplication (input H,
output H)

2x Pointwise tanh (size H)

3x Pointwise sigmoid (size H)

6x Pointwise add (size H)

2x Pointwise multiplication (size H)

Computation required

12

LSTM

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

For a batch of 1, wt, ht are vectors of size H

Operations:

4x Matrix-vector multiplications (input 2H,
output H)

1x Matrix-vector multiplication (input H,
output H)

2x Pointwise tanh (size H)

3x Pointwise sigmoid (size H)

5x Pointwise add (size H)

2x Pointwise multiplication (size H)

Computation required

13

LSTM

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

For a batch of B, wt, ht are matrices of size
HxB.

Operations:

4x Matrix-matrix multiplications (input 2HxB,
output HxB)

1x Matrix-vector multiplication (input H,
output H)

2x Pointwise tanh (size HxB)

3x Pointwise sigmoid (size HxB)

5x Pointwise add (size HxB)

2x Pointwise multiplication (size HxB)

Computation required

14

[A1][h] = [x1]

[A2][h] = [x2]

[A3][h] = [x3]

[A4][h] = [x4]

Increasing Parallelism
An aside

As the matrix multiplications share inputs we can combine them

A [h] = x

15

LSTM

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

For a batch of B, wt, ht are matrices of size
HxB.

Operations:

1x Matrix-matrix multiplication (input 2HxB,
output 4HxB)

1x Matrix-vector multiplication (input H,
output H)

2x Pointwise tanh (size HxB)

3x Pointwise sigmoid (size HxB)

5x Pointwise add (size HxB)

2x Pointwise multiplication (size HxB)

Computation required

16

LSTM

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

For a batch of B, wt, ht are matrices of size
HxB.

Operations:

1x Matrix-matrix multiplication (input
2HxB, output 4HxB)

2x Pointwise tanh (size HxB)

3x Pointwise sigmoid (size HxB)

5x Pointwise add (size HxB)

2x Pointwise multiplication (size HxB)

Computation required

17

Matrix-matrix multiplications

A matrix-matrix multiplication (or GEMM) C=AB can be parameterized by three matrix
dimensions: M, N and K.

Floating point ops = MN(2K-1) ≈ 2MNK

Bytes through memory = sizeof(dataType) * (MK + KN + MN)

Known as GEMM

A

B

=C

K

K

N

MM

N

18

LSTM Matrices

From before, data input is shape 2HxB, data output is shape 4HxB.

If A is our parameter matrix, this gives M=4H, N=B, K=2H

 Floating point ops ≈ 2*4H*B*2H = 16HHB

 Bytes through memory (fp32) = 4(8HH + 2HB + 4HB)

This gives a flops:byte ratio of 16HHB:4(8HH + 2HB + 4HB) = 2HB:3B+4H

FLOP:Byte ratio

19

Memory vs FLOP bound

Batch size (B) can vary for a given model while giving a similarly performing model.

When training memory capacity required scales roughly linearly with batch size.

Convergence can be poor if batch size is too large or too small.

In deployment it may be only a few samples are available to be processed at once which
potentially limits batching

Expected batch size

20

Roofline model for LSTM
Selecting an efficient minibatch size

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

G
FL

O
P/

s

Minibatch

Roofline model for LSTM GEMM. H=2048, NVIDIA P100

Theory

21

Roofline model for LSTM
Selecting an efficient minibatch size

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

G
FL

O
P/

s

Minibatch

Roofline model for LSTM GEMM. H=2048, NVIDIA P100

Theory Achieved

22

LSTM Network Level Optimizations

23

Network Level Optimizations

Problem statement: given a fixed H and B, how can I make my network execute
faster?

I will talk about three optimizations that could be performed:

1. Reducing memory traffic

2. Reducing overheads

3. Increasing parallelism

See 1 for other possible optimizations

1Optimizing Performance of Recurrent Neural Networks on GPUs. Appleyard et al., arXiv 2016.

24

Reducing Memory Traffic

For small (unchangeable) minibatch we are bandwidth limited. The majority of the
bandwidth is loading the A matrix, which is constant over time.

If we can reduce the amount of times we load A, the faster we expect to go.

Optimization #1

25

Unrolling Over Time

• Perform the same operation repeatedly on a combination of:

• Previous state

• New input

Before

LSTM

Cell

𝑤𝑡

ℎ𝑡

ℎ𝑡

ℎ𝑡−1

26

Unrolling Over Time

• Perform the same operation repeatedly on a combination of:

• Previous state

• New input

After

….

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

27

Freeing Dependencies

The LSTM equations have many matrix multiplications of the form: 𝑊∗ 𝑤𝑡; ℎ𝑡−1

Here wt is the input from the previous layer, ht-1 the input from the previous
recurrent step

We can isolate these two parts of the matrix multiplication:

𝑊∗ 𝑤𝑡; ℎ𝑡−1 = 𝑊𝑙∗ 𝑤𝑡 +𝑊𝑟∗ ℎ𝑡−1

This results in one matrix multiplication operating on the output from the previous
layer and one operating on the output from the previous step.

Functionally this is the same.

Previous Layer Input vs Recurrent Input

28

Fusing Operations Over Time

Each arrow can be seen as a matrix multiplication. Because the vertical arrows are
independent, they can be grouped

Effective Minibatch Increase

….

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

29

Fusing Operations Over Time

Each arrow can be seen as a matrix multiplication. Because the vertical arrows are
independent, they can be grouped

With x times as many input elements to process, grouping by x is equivalent to
increasing minibatch by x (parameter matrix is time-invarient).

Parallelism can be preseved by task parallelism or “streaming”

Effective Minibatch Increase

….

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

30

Persistent RNNs

Fusing operations over time only helps some of our matrix multiplications: the
recurrent operations are still bandwidth limited.

Diamos et al.2 have proposed a method to keep the recurrent matrix in on-chip at a
very high read bandwidth

Some constraints to implementation due to size limits of on-chip memory, but
impressive speedups for small batches (>10x)

2Persistent RNNs: Stashing Recurrent Weights On-Chip, Diamos et al., ICML 2016

Advanced Technique

31

Overhead Reduction
Optimization #2

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

For a batch of B, wt, ht are matrices of size
HxB.

Operations:

1x Matrix-matrix multiplication (input 2HxB,
output 4HxB)

2x Pointwise tanh (size HxB)

3x Pointwise sigmoid (size HxB)

5x Pointwise add (size HxB)

2x Pointwise multiplication (size HxB)

32

Overhead Reduction
Optimization #2

Equations:

𝑖𝑡 = 𝜎(𝑊𝑖 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑜)

Ƹ𝑐𝑡 = tanh(𝑊𝑐 𝑤𝑡; ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ Ƹ𝑐𝑡

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)

For a batch of B, wt, ht are matrices of size
HxB.

Operations:

1x Matrix-matrix multiplication (input 2HxB,
output 4HxB)

2x Pointwise tanh (input HxB)

2x Pointwise sigmoid (input HxB)

5x Pointwise add (input HxB)

2x Pointwise multiplication (input HxB)

33

Pointwise Operations

A naïve implementation of these pointwise operations on the GPU would implement
each as a separate GPU kernel

A kernel essentially means:

• CPU launches the kernel to the GPU with some small overhead

• For each pointwise element, launch one thread

• This thread reads the value it is responsible for, does a simple operation and
writes its result

There are two problems with this: overhead of kernel setup and bandwidth

Optimization #2

34

Pointwise Operations

A solution to this is to fuse the pointwise operations into one kernel

Instead of launching on kernel per operation, launch one to do the entire series

In the above case, this is more than 2x speedup!

Solution

Source: https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/

35

Increasing Parallelism
Optimization #3

….

….

….

36

Increasing Parallelism
Optimization #3

….

….

….

37

Increasing Parallelism
Optimization #3

….

….

….

38

Increasing Parallelism
Optimization #3

….

….

….

39

Increasing Parallelism
Optimization #3

….

….

….

40

Increasing Parallelism
Optimization #3

….

….

….

41

Increasing Parallelism
Optimization #3

….

….

….

42

Increasing Parallelism
Optimization #3

….

….

….

43

Increasing Parallelism
Optimization #3

….

….

….

44

Performance
Using Streams + Layers

Output of the NVIDIA visual profiler:

45

Three Optimizations

For an LSTM with the following properties:

• 512 hidden units

• 100 recurrent iterations

• Minibatch 64

• Four layers

Before: 83.6ms/pass

After: 23.8ms/pass

Speedup

46

cuDNN

NVIDIA provides a free library for accelerating Neural Network operations: cuDNN

cuDNN is integrated into all major frameworks and provides optimized routines for
many neural network architectures, including basic RNNs, GRUs and LSTMs.

More info and download here: developer.nvidia.com/cudnn

Other libraries are available for BLAS operations, FFT, random number generation,
and many more operations.

Library for Neural Networks

https://developer.nvidia.com/cudnn

47

Final Words

Both hardware and software choices can greatly reduce time to solution.

It’s important to be aware of performance trade-offs being made when designing and
executing a network.

Libraries and frameworks are intended to do as much of this as possible for you, but
it may be you have to do a little extra work to get best performance, especially
when straying off the beaten path

